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Abstract: - In this paper, a NCGPC (Nonlinear Continuous Time Generalized Predictive Control) is proposed for 

a single-link flexible joint manipulator. This control is developed by using a property of NCGPC, the 

demonstration that the selection of particular design parameters, such as control order and predictor order leads 

to well-known feedback linearization. Simulations are presented in order to illustrate the effectiveness of the 

approach. 
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1   Introduction 
A very important feature in modern robot system is the 

flexibility, which is required in specific applications of 

industrial automation and space system. Meanwhile in 

order to increase the control performance, it is necessary to 

consider flexible joints instead rigid joints, then the 

mathematical model becomes more complex if the joint 

flexibility is taken into account. Many controllers have 

been designed for this kind of manipulator, as examples 

[1]-[4]. Model based predictive control has recently 

received much attention from researchers, as a popular 

control technique in linear and nonlinear systems. The 

NCGPC, [5, 6] is an alternative nonlinear predictive 

controller; this controller was developed in a different way 

than conventional nonlinear predictive controllers. The 

NCGPC is based in the prediction of the system output and 

due to the fact that it was not derived with the objective of 

canceling nonlinearities, as feedback linearization 

techniques do, the NCGPC has three advantages: First, it 

can constrain the predicted control through
uN -additionally 

the response becomes slow and the control is not very 

active-, and second, when rNN yu  , there is not zero 

dynamics cancellation and then the internal stability is 

preserved. Also, the NCGPC [7] provides a nice way of 

handling systems with unstable zero dynamics. And the 

last advantage is the control weight  , it plays a very 

important role in the cost function.  In [8], the non-regular 

nonlinear system is treated by using the last two 

advantages of the NCGPC. Another of the main 

advantages of NCGPC control schemes is that, when Nu= 

Ny  -r they do not require on-line optimization and 

asymptotic tracking of the smooth reference signal is 

guaranteed. This last advantage will be used in this paper 

in order to control a single link manipulator with flexible 

joint Simulations are presented in this paper in order to 

show the effectiveness of the control strategy. 
 

2   Review of NCGPC 
This paper considers the nonlinear SISO systems with 

all system states assumed to be accessible, affine in 

the input with the following state-space 

representation:  

 

uxgxftx )()()(      (1) 

)()( xhty   

 

where f, g and h are differentiable Ny times with 

respect to each argument. xR
n
 is the vector of the 

state variables, uR is the manipulated input and 

yR  is the output to be controlled.  It has a well- 

defined relative degree and its zero dynamics are 

stable. 

 The development of the NCGPC [5, 6] was carried 

out following the receding horizon strategy of its 

linear counterpart [9].  

 The output prediction is approximated for a 

Maclaurin series expansion of the system output as 

follows. 
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  The predictor order 
yN  is chosen less than the 

number of the times that the output has to be 

differentiated in order to obtain terms not linear inu . 

  The NCGPC is based in taking the derivatives of the 

output, which are obtained as follows 
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  Where Lfh(x) represents the Lie derivative
iS ,

iJ and 

iI , are some functions of  x  (and not u ). These 

output derivatives are obtained from the system of 

equation (1) and Ny  is chosen less than the number of 

the times that the output has to be differentiated in 

order to obtain terms not linear in u , r  is the relative 

degree. Output and its derivatives can be rewritten by 
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  In order to drive the predicted output along a desired 

smooth path (reference trajectory) to a set point. Two 

different reference trajectories are chosen in order to 

demonstrate the properties of NCGPC. The first 

reference trajectory is the output of the following 

reference model [9] 
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The reference trajectory is given by  
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 where w is the set point, or rewriting this equation 
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The second reference trajectory yr(t) is the output of 

the reference model represented by 
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In order to define the predicted output of the 

reference trajectory ),( Ttyr
a truncated Taylor series 

is used, obtaining: 
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where the derivatives are easy to obtain from the 

reference model simulation. Rewriting this equation  
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   NCGPC calculates the future controls from a 

predicted output over a time frame. The first element 

u(t) of the predicted controls is then applied to the 

system and the same procedure is repeated at the next 

time instant. Thus predicted output depend on the 

input u(t)  and its derivatives, and the future controls 

being function of u(t) and its Nu-derivatives. The cost 

function is: 
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with the substitution of equations (7) and (12) or (13) 

the cost function the minimization results in  
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  As explained above, just the first element of uNu is 

applied. The control law is given by  
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3   Geometric Interpretation 

In this section the input-output feedback linearization 

[10] and [11] is shown to be equivalent to NCGPC. 

The control law given by equation (18) is analyzed; 

the matrix H equation (8) is decomposed as  
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  The matrix Ty equation (5) is decomposed as  
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The equation (17) can be written as  
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   The unitary matrix I has dimension 

)1()1(  rNrN yy
. The first row of the inverse 

of H2 is given by 
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  Then, the first row of K, which will be called k 
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where  t1, t2,, t3,, …, tr are elements of the first row of 
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equation (11), the control law is given by  
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where 
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   We can notice, that large Ny does not require a 

bigger computational effort, because as we can see 

from equation (26), the control depends just on the r-

first derivatives, thus the rest of the derivatives only 

have influence in obtaining the parameters of ti , 

which just depends on T. Moreover, Ny can be 

chosen as the smallest predictor order, which is such 

that the predicted output depends on u(t). Because of 

this, the relative degree r will be the smallest 

predictor order Ny.. We can conclude if Nu= Ny  -r, the 

control law is independent of the last Ny  -r 

derivatives. Then it is possible to calculate the 

parameters βi considering the largest Ny. without the 

use of the remaining derivatives. Substituting 

equation (26) into the rth derivative given by 

equation (6) leads to: 
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   Rearranging and taking Laplace transforms, the 

resulting closed-loop transfer function is given by:  
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    Note that, by using the Routh-Hurwitz criterion, 

we can show that the systems are stable only for 

systems with r≤ 4. 

    If the reference trajectory is chosen as the equation 

(12), following the same procedure the control law is 

given by 
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   We can see that the control law is identical to the 

control law presented by Isidori [10], which solves 

the problem known as asymptotic model matching. 
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4   Control law of a Single-Link 

Flexible Joint Manipulator 

In this section the predictive control (30) of the 

single-link flexible joint manipulator is obtained, the 

derivatives are required for this controller, which are 

obtained of the single-link flexible joint manipulator 

model. The single-link flexible joint manipulator is 

shown in Fig. 1, which has a difference between the 

angular position of the motor and that of the driven 

link, i.e. joint flexibility exists. The mathematical 

model is given by [4]. 
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where 

I  Inertia of flexible manipulator 0.03 kgm
2
   

J  Inertia of rotational platform 0.004 kgm
2 

g  Gravitational acceleration 9.81 N/m 

L  Distance to center of gravity of rotational platform 

    0.135m  

M Mass of the flexible joint 0.6 Kg 

k  Flexibility coefficient joint 31.0 Nm/rad 

 

The values are considered from [4], the output is the 

link angular displacement x1 and the control u is the 

torque given by the motor. 

 

 
Figure 1. Single-link flexible joint manipulator  

 

  The reference trajectory yr(t) is the output of the 

reference model represented by 
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  The derivatives are obtained as follows  
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5   Simulations 
In order to show the effectiveness of the proposed 

controller simulation will be presented. In this 

simulation design parameters are chosen as: setpoint 

equal π/2, r=4, Ny=4, Nu=Ny–r=0, T2=1 and T1=0.  

The output system and the reference are shown  Fig. 

2,  Fig.3 show the error tracking and Fig. 4 the 

systems states. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 
Figure 2. System Output and reference trajectory  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

1

1.5

2
x 10

-15

 
Figure 3. System Tracking error  
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Figure 4. Systems states  

 

4   Conclusion  
The selection of particular design parameters NCGPC 

(Nonlinear Continuous Time Generalized Predictive 

Control), such as control order and predictor order 

leads to well-known feedback linearization. The 

response of closed loop is influenced by the 

prediction horizon and the reference model. 

Simulations are presented in order to demonstrate the 

effectiveness of NCGPC. 

Another of the main advantages of NCGPC control 

schemes is that, when Nu= Ny  -r they do not require 

on-line optimization and asymptotic tracking of the 

smooth reference signal is guaranteed. We can show, 

that incredible as it may seem, large Ny does not 

require a bigger computational effort, because the 

control depends just on the r-first derivatives, thus 

the rest of the derivatives only have influence in 

obtaining the parameters of ti , which just depends on 

T. Then it is possible to calculate the parameters βi 

considering the largest Ny., without the use of the 

remaining derivatives.  Additionally, it is shown that 

the control law is another feedback linearization, thus 

closed-loop stability is ensured. 

A closed-loop transfer function was found, it is 

possible to infer that, by using the Routh-Horwitz 

criterion, systems are stable only for systems with r≤ 

4. 
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